
Factorisation of operators and coupled nonlinear evolution equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 L77

(http://iopscience.iop.org/0305-4470/12/5/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 5, 1979. Printed in Great Britain 

LE'ITER TO THE EDITOR 

Factorisation of operators and coupled nonlinear evolution 
equations 

A Kh Fridman and M M El'yashevich 
Heat and Mass Transfer Institute, BSSR Academy of Sciences, BSSR, USSR 

Received 10 January 1979 

Abstract. Pairs of coupled nonlinear evolution equations are considered. Factorisation of 
the L-operator that relates the equations in such pairs may be realised by the operators of 
creation and annihilation of solitons, and yields the unitary scattering operator for the 
processes of collision of arbitrary wave disturbances with solitons as well as a new form of 
the Backlund transformation. 

We consider the equations (Korteweg and de Vries 1895, Toda 1967) 

U ,  + 6uuX - U,,, = 0 (1) 

(In U k ) r  = ik-112- i k + l / z r  (ik)r = v k - 1 / 2 -  v k + 1 / 2  (2) 

which belong to the Lax class of exactly solvable equations (Lax 1968) 

L, =LA -AL. (3) 

The remarkable feature of this class of equations is the existence of soliton solutions 
which behave like one-dimensional particles. Each soliton corresponds to one discrete 
eigenvalue of the L-operator. This fact allows us to use the quantum mechanical 
factorisation method (Infeld and Hill 1951, Green 1965), which is a conventional tool 
for investigating the characteristics of the discrete spectrum of operators. 

The present Letter extends the factorisation method to investigate the soliton 
dynamics for nonlinear evolution equations. 

Consider a factorisation of the L-operator for equations (1) and (2), 

L =  H * H - ~ ~ ,  (4) 

where * means conjugation, and H is given by 

H = U' + d/dx 

H = exp (3 d/dk)ck + i k  exp (-3 dldk) 

for (1) and (2) respectively. Representation (4) allows us to build the following 
equations coupled with (1) and (2): 

i ' ~ + 6 1 2 ~ U ' ~ - U ' ~ ~ ~  = O  (7) 

(In 6k)r = ik-112- ik+1/2, (In i k ) ,  = fik-1/2-3k+1/2. (8) 
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For these equations, expression (3) may be realised by the (L, A)-pair 

where AI and A 2  have the form of the A-operator for the initial equations and depend 
on 

2 2 
u1=U’2+U‘x-a , U2 = U‘ - U’x -a  

and 
i l k  = i k  + 6 k + 1 / 2 ,  

i 2 k  = c k  + i k + l  f 2 ,  

v l k  = i k c k - 1 / 2  

V 2 k  = v k l k - 1  f 2  
.. 

for equations (7) and (8) respectively. Expressions (10) and (11) follow directly from 
the representation 

i’ - i 2 A  - Ai2 
t -  

and are recognised as the generalised Miura transformations (GMTs) which connect 
two solutions of one nonlinear equation (1) or (2) with solutions of a new equation (7) or 
(8). These transformations can be written in the operator form 

(12) 

Elimination in these equalities of the solution with the ‘tilde’ yields the expression 
which relates directly two different solutions of (1) or (2), or the so-called ‘spatial part’ 
of the Backlund transformation (BT). 

An essential moment of the further consideration is the fact that GMTs have the 
form of the Riccati equation for solutions with a ‘tilde’. This allows us to consider three 
different solutions distinguished by asymptotes at x + fa. For instance, for (10) 

2 L ~ = H * H - ~ ’ ,  L Z = H H * - a .  

J&m, t )  = -a, U’out(*m, t )  = a, U’(*m, t )  = *a. 

As will be shown below, the indices ‘in’ and ‘out’ which are introduced here relate these 
three solutions to the problem of collision with solitons. 

Such ambiguity of GMTs yields three possible factorisations of the L-operator: 

(13) L1= H:H,,,-a2= H&,tHout-a 2 = H*H-a’ ,  

L~~~ = H,,H: - (14) 

The potential u2 of the operator L(u2) has the following asymptotic form at t + ~ a )  

(Perel’man et a1 1974), 

uin - 2a2 sech2 a x ,  
-2a2 sech2 ( a x  - 6 )  + uout, 

t + - m  
t + m ,  u2+ [ 

and describes the process of collision of disturbance uin with a soliton for equation (1). 
The potentials uZin and uZout of the operators L(uZin) andL(uZout) have asymptotic forms 

U2in + Uin, t+-a) (19) 

U2out + uout, t+m. (20) 
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In order to solve the collision problem (17), (18), it is necessary to express uout in terms 
of Uin. 

We determine the unitary scattering operator S, 

911zout = S*2in, (21) 

~ 2 i n * 2 i n  = kZ*2in, L2out*2out = k2*20ut, 

where 

From (14), (15,) and (21), the next equivalent definition follows, 

H o u t  = S H i n ,  

or, in the explicit form, 

S = Hout WH: (22) 

where W is the weight operator, which in the representation of eigenfunctions of the 
operator L ( U )  is A - ~ .  

According to Fridman and El'yaserich (1976), U' may be expressed in terms of u2 as a 
series of CY-' powers. Consider U' at t + TOO: 

Gin + (Y tanh ax, 
(Y tanh ( a x  - S )  + 

t+ -m 
t + m .  

U ' + [  

Thus for equation (7) we have the process of scattering of disturbance Gin with a shock 
wave, the scattering operator for which is related to the operator (22), 

g s h = ( o  1 0  s); 

In conclusion, the scattering operatof for collision U'i, with a soliton of equation (7) is 

where S1 and S2 describe scattering disturbances ulin and uZin, which are defined by 
(lo), with a soliton for equation (1).  

The investigation which has been undertaken for equations (1) and (7) is fully 
applicable to (2) and (8). The scattering operators S, s s h  and Ssol are built from H and 
H* defined by formula (6). 
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An action of the operators Hi,, HOut and H on the eigenfunctions of operators LGl) 
and L(u2) may be analysed best of all in terms of scattering data (or through the 
variables 'angle-action'), since it is defined by an asymptotic behaviour of these 
operators. Consider, for example, the scattering data for operators L ( u l ) ,  

for equations (1) and (2) respectively, where S(k) is the reflection coefficient, ki, zi the 
discrete eigenvalues, and F :  (t) the normalization of eigenfunctions. Then the action of 
Hi, and H,,, on (26) and (27) yields the scattering data for operators L(uZin)  and 
L(uz,ut), 

where 

It is clear that the scattering operator S transforms the scattering data (28) and (30) into 
(29) and (31) respectively. 

The situation is different when the operator H acts on the scattering data (26) and 
(27). This operator adds one discrete eigenvalue to the spectrum. Introducing the 
index n, which describes the number of solitons in the system, we have 

H n + l * n  = A *n+1 

H:+I *n+l=A*n,  

where the operators H, and H :  may be interpreted as the operators of creation and 
annihilation of solitons. This allows us to construct the spatial part of the BT for 
equations (7) and (8): 

(32) H,H: -& = H,*+ ,H~+,  -an+l.  2 



letter to the Editor L8 1 

It is interesting to note that unlike the GMT or BT for equations (1) or (2), formula (32) 
couples the H-operators with different indices n. 

Besides, it follows from (28), (30) and (29), (31) that for scattering with solitons the 
variables ‘action’ do not change while the variables ‘angle’ acquire a jump. 

The treatment given above allows the consideration of the following equations: 

In these cases it is more convenient to factorise the square of the L-operators. In 
particular, for equation (33) Lz may be expressed as 

O l d  0 2 ,  
L = H*H H‘(1 o>ax+(a* 3. (35) 

For equation (34) L2 represents the L-operator for the Toda (1967) lattice, and 
factorisation leads to the equation 

( K k ) t  = ( h 2 - f i z ) ( f i k + 1 - f i k - , ) .  (36) 
Further consideration of equations (33) and (34) is almost exactly the same as discussed 
above. 
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